Self-dual modules of semisimple Hopf algebras
نویسندگان
چکیده
منابع مشابه
Normal Hopf Subalgebras of Semisimple Hopf Algebras
In this note the notion of kernel of a representation of a semisimple Hopf algebra is introduced. Similar properties to the kernel of a group representation are proved in some special cases. In particular, every normal Hopf subalgebra of a semisimple Hopf algebra H is the kernel of a representation of H
متن کاملOn semisimple Hopf algebras of low dimension
We announce recent progress on the question about the semisolvability of semisimple Hopf algebras of dimension < 60. 2000 AMS Subject Classification: 16W30
متن کاملDepth Two Hopf Subalgebras of Semisimple Hopf Algebras
Let H be a finite dimensional semisimple Hopf algebra over an algebraically closed field of characteristic zero. In this note we give a short proof of the fact that a Hopf subalgebra of H is a depth two subalgebra if and only if it is normal Hopf subalgebra.
متن کاملCoset Decomposition for Semisimple Hopf Algebras
The notion of double coset for semisimple finite dimensional Hopf algebras is introduced. This is done by considering an equivalence relation on the set of irreducible characters of the dual Hopf algebra. As an application formulae for the restriction of the irreducible characters to normal Hopf subalgebras are given.
متن کاملSemisimple Hopf Algebras and Their Depth Two Hopf Subalgebras
We prove that a depth two Hopf subalgebra K of a semisimple Hopf algebra H is normal (where the ground field k is algebraically closed of characteristic zero). This means on the one hand that a Hopf subalgebra is normal when inducing (then restricting) modules several times as opposed to one time creates no new simple constituents. This point of view was taken in the paper [13] which establishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(02)00034-0